

ResFusion: A Residual Learning based Fusion Framework for CTR Prediction

Junmei Bao¹, Yangguang Ji¹, Yonghui Yang¹, Le Wu^{1, 2, *}, and Ruiji Fu² {hfut.baojunmei, jyguang1997, yyh.hfut,lewu.ustc}@gmail.com, rjfu@iflytek.com ¹ School of Computer Science and Information Engineering, Hefei University of Technology ² State Key Laboratory of Cognitive Intelligence iFLYTEK

Model Training

- The overall process of our framework can be divided into three steps: **U** We train a strong classifier called GBDT and obtain the prediction score of GBDT \hat{y}_t ;
- \Box We calculate the residual between the true label y and the GBDT's output \hat{y}_t ; **U** We train a **DeepFM** try to fit the residual values and get the predicted value of the DeepFM \hat{y}_D ;
- \Box We sum the output of two components: \hat{y}_t , \hat{y}_D , and obtain the final prediction score $\hat{y} = \hat{y}_t + \hat{y}_D$.

Model Disscussions

The key point of our framework is that we use the residual values between the **GBDT's output and the true label as the new label to train the DeepFM.**

- **Rapid Convergence**: In our framework, the second model is trained on the basis of the first model, so it needs to learn less content until reaching convergence with relatively faster speed.
- **Model Generalization**: Through the repeated joint learning of two completely different learning mechanisms, our framework can learn the hidden information more generally under the input data.
- **Model Flexibility**: Our framework is artfully sequentially links the two model as the fuse process during the model training process and can also be extended with feature fusion mothods.

Table 1. The statistics of the three datasets							
Dataset	Avazu	zu Cretio Zhihu					
Total instances	40M	45M	2M				
Train	36M	40.5M	1.8M				
Test	4M	4.5M	0.2M				
Numerial features	0	13	131				
Categorical features	23	26	18				

Experiments

Mod

LR FM GBI Deep GBI

GBI GBI \overline{GB} NNr

GB

K = K =

 $\mathbf{K} =$

面要電子科技大學 XIDIAN UNIVERSITY

lels	Avazu		Cretio		ZhiHu	
	AUC	Logloss	AUC	Logloss	AUC	Logloss
	0.5453	0.4554	0.5690	0.5650	0.6122	0.5613
	0.7759	0.3820	0.7674	0.5052	0.7319	0.4102
TC	0.7608	0.3895	0.8009	0.4495	0.8390	0.3706
pFM	0.7852	0.3779	0.7959	0.4569	0.7712	0.3787
DT+LR	0.7634	0.3877	0.8025	0.4423	0.8405	0.3700
DT2DNN	0.7858	0.3761	0.8031	0.4417	0.8409	0.3699
DT2DeepFM	0.7863	0.3741	0.8037	0.4412	0.8417	0.3702
DT + DeepFM	0.7860	0.3767	0.8022	0.4367	0.8411	0.3707
es+GBDT	0.7872	0.3726	0.8030	0.4379	0.8420	0.3702
DTRes+NN	0.7921	0.3720	0.8065	0.4348	0.8676	0.3679

Table 3. AUC and Logloss comparisons with different number of iterations K.

Residual iteration	Avazu		Cretio		ZhiHu	
	AUC	Logloss	AUC	Logloss	AUC	Logloss
K = 0	0.7608	0.3895	0.8011	0.4495	0.8390	0.3706
K = 1	0.7921	0.3720	0.8069	0.4350	0.8676	0.3679
K = 2	0.7925	0.3717	0.8073	0.4341	0.8684	0.3679
K = 3	0.7922	0.3720	0.8071	0.4351	0.8680	0.3680

Conclusion

• Our proposed framework alleviates the **challenge** that the **existing CTR models cannot fully learn from data with both sparse** category and dense numerical features.

□ It gains performance improvement for **some advantages which we** mentioned in the model discussions part

• Extensive experimental results on three real-world datasets show the **effectiveness** of our proposed framework.

认知智能国家

1111